

 Docs

 Pricing

 Enterprise
	

 FAQ
	

 Contact Us
	

 Sign In
	

 Get my API key

Api2Pdf

>Blog>Research>Debugging Amazon S3, Lambda, Timeouts, ContentOperationNotPermitted, wkhtmltopdf, and Headless Chrome

	
		
			
			Debugging Amazon S3, Lambda, Timeouts, ContentOperationNotPermitted, wkhtmltopdf, and Headless Chrome

			
				November 1st, 2018 /
				by api2pdf /
							

						
							

			
			
				
				Intro

You ever run into a bug that is so perplexing you don’t even know where to begin? I’d like to share a story that happened this week. As you may know, Api2Pdf runs on AWS Lambda. AWS Lambda is Amazon’s serverless compute service that lets you scale to countless requests very easily.

Our two most popular API endpoints generate PDFs using wkhtmltopdf or Headless Chrome. Your choice, of course. You pass Api2Pdf some HTML, it spits back out a PDF.

However, a customer emails in this week with a strange problem. Take the simple HTML below.

The most basic Hello World that included a link to a style sheet. For the sample above I redacted the actual URL to the stylesheet, but the css file was pretty large and it was hosted on Amazon S3.

The Problem

Our Headless Chrome endpoint was timing out on generating a PDF out of the HTML above. The css file must be the cause, right? Something about it must be breaking our Lambda function. This was worrisome. Our entire business is about generating PDFs and if we cannot even convert a Hello World HTML, what good are we?

Here’s the kicker – the CSS file was hosted on Amazon S3’s West Region. But if you move the exact same file to Amazon S3’s US East Region, the PDF generates just fine!

How could a single Lambda function fail when pulling a file from the West region, but succeed when pulling the file from the East? This made no sense. Surely Lambda, which is hosted on AWS, would have no problem pulling a file from another data center?

Out of sheer curiosity, I decided to see what happens if we use the wkhtmltopdf function instead of Headless Chrome. I run the tests against the East and West css files and I nearly lose my mind. Wkhtmltopdf has no problem generating a PDF from the West file, but fails on the East file!

What the f…..?!? Just to recap:

	Headless Chrome generates the PDF from the East, fails on the West.
	Wkhtmltopdf generates the PDF from the West, fails on the East.

At this point I am so confused I don’t even know where to begin.

Take a step back

What was strange about the way wkhtmltopdf failed was that it did in fact give an error. Specifically a “ContentOperationNotPermittedError”. Unlike Headless Chrome which just times out after a while. Even the way the two engines fail is different…

I google the error and come across this github post. I’m not really following or understanding the discussion as it ends up linking to another issue regarding ContentNotFoundError. This other error has more information, however. Apparently the ContentNotFoundError happens if you are linking to a resource that does not exist. I’ve seen this with other support tickets but it is usually because the css file they link to is using relative links instead of fully resolved urls. But maybe there are some relative links inside the css file?

Eureka

The breakthrough moment was when we discovered that within the CSS file there were 18 places in which relative links were being used. The relative links were trying to pull in a font at location /assets/fonts/OpenSans-Regular.woff.

In hindsight I could have just loaded the HTML file in chrome and used the Development Console to discover that it failed to load resources. Seems obvious now, but I was thrown on to the wrong trail early on and never bothered to look at the simple things.

But there was still something that remained unexplained. Even with the relative links which no doubt would cause problems, why would Headless Chrome and wkhtmltopdf succeed / fail on different regions?

Because of the relative links, they were resolving to the following:

East: https://s3.amazonaws.com/assets/fonts/OpenSans-Regular.woff

West: https://s3-us-west-2.amazonaws.com/assets/fonts/OpenSans-Regular.woff

Each region handles the failed asset different. East throws a Forbidden, Access Denied, while West straight cancels the request. Take a look below:

East

West

Why Amazon S3 returns two different errors for the same problem is beyond me, but that’s not important here. What is important is:

Wkhtmltopdf and Headless Chrome handle the Access Denied and Canceled Requests differently.

Wkhtmltopdf fails on the Access Denied on East, but will ignore Canceled requests on West and generate a PDF with our default font, Roboto.

Headless Chrome times out on the Canceled Request on West, but is more forgiving on the Access Denied on East and will generate a PDF with our default font, Roboto.

So there you have it. A rabbit hole that was kind of interesting and maybe this helps someone else out there as well. Thanks for reading.

								
				Tags: aws lambda timeout, headless chrome api, headless chrome timeout, html to pdf api, wkhtmltopdf api, wkhtmltopdf html css
			

			
						
		

	

			Comments are closed.

		

		
	

Categories

				Example Uses

	Integrations

	News

	Research

			Archives

				July 2023
	June 2022
	March 2022
	January 2022
	December 2021
	October 2021
	July 2021
	June 2021
	April 2021
	January 2021
	October 2020
	May 2020
	April 2020
	February 2020
	January 2020
	August 2019
	June 2019
	May 2019
	April 2019
	March 2019
	February 2019
	January 2019
	December 2018
	November 2018
	October 2018
	September 2018
	August 2018
	July 2018

			
		
		Recent Posts

			
					Background color on header / footer in Headless Chrome
									
	
					[resolved] 403 Forbidden error message in logs
									
	
					Extract pages out of a PDF with REST API
									
	
					Generate PDF from Cloudflare Worker with Headless Chrome
									
	
					Set ViewPortOptions on Chrome > Screenshot API
									

		

	

		
	Documentation
	Pricing
	Enterprise
	FAQ
	Portal
	Contact Us
	Blog
	Twitter / News / Status
	Alternatives
	Terms of Service
	Privacy Policy
	Multilingual Guides

		

			
	API2PDF

4401 Fairfax Drive STE 200

Arlington VA 22204

		

	
	

		© 2020 — api2pdf ™
	

	

			

		

